[tex] \lim_{x \to \infty} \frac{(3x-6)(x^2-2x)}{(2x^2-8)(6x-12)} [/tex]
            Matematika
            
               
               
            
            
               
               
             
            tegarsurya81
         
         
         
                Pertanyaan
            
            [tex] \lim_{x \to \infty}  \frac{(3x-6)(x^2-2x)}{(2x^2-8)(6x-12)} [/tex]
               
            
               1 Jawaban
            
            - 
			  	1. Jawaban gumball3pointdapat difaktorkan menjadi
 [tex] \lim_{x \to \infty} \frac{(3x-6)(x-2)x}{2(x-2)(x+2)2(3x-6)} = \lim_{x \to \infty} \frac{x}{4(x+2)} = \frac{1}{4} \lim_{x \to \infty} \frac{x}{x+2}= \frac{1}{4}* 1[/tex]
 maka
 [tex] \lim_{x \to \infty} \frac{(3x-6)(x^2-2x)}{(2x^2-8)(6x-12)}= \frac{1}{4} [/tex]